Immersions of surfaces into surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immersions of Surfaces into Aspherical 3-manifolds

We study finite order invariants of null-homotopic immersions of a closed orientable surface into an aspherical orientable 3-manifold. We give the foundational constructions, and classify all order one invariants.

متن کامل

Higher Order Invariants of Immersions of Surfaces into 3-space

Finite order invariants of stable immersions of a closed orientable surface into R have been defined in [N], where all order 1 invariants have been classified. In the present work we classify all finite order invariants of order n > 1, and show that they are all functions of the universal order 1 invariant constructed in [N]. The structure of the paper is as follows: In Section 2 we summarize t...

متن کامل

Order one invariants of immersions of surfaces into 3 - space

We classify all order one invariants of immersions of a closed orientable surface F into R3, with values in an arbitrary Abelian group G. We show that for any F and G and any regular homotopy class A of immersions of F into R3, the group of all order one invariants on A is isomorphic to Gא0 ⊕B⊕B where Gא0 is the group of all functions from a set of cardinality א0 into G and B = {x ∈ G : 2x = 0}...

متن کامل

Immersions of Non-orientable Surfaces

Let F be a closed non-orientable surface. We classify all finite order invariants of immersions of F into R, with values in any Abelian group. We show they are all functions of the universal order 1 invariant that we construct as T ⊕ P ⊕Q where T is a Z valued invariant reflecting the number of triple points of the immersion, and P,Q are Z/2 valued invariants characterized by the property that ...

متن کامل

Immersions of Surfaces with Boundary into the Plane

Let f : M→R2 be a smooth immersion of a compact connected oriented surface with boundary M into R. Kauffman defined an equivalence relation called image homotopy and classified the set of all orientation preserving immersions of M into R up to image homotopy. When M is of genus one and the number of boundary components is strictly greater than one, Kauffman’s result requires a correction. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1986

ISSN: 0040-9383

DOI: 10.1016/0040-9383(86)90021-2